首页> 外文OA文献 >A Simple and Unified Approach to Identify Integrable Nonlinear Oscillators and Systems
【2h】

A Simple and Unified Approach to Identify Integrable Nonlinear Oscillators and Systems

机译:一种简单统一的可积非线性辨识方法   振荡器和系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider a generalized second order nonlinear ordinarydifferential equation of the form$\ddot{x}+(k_1x^q+k_2)\dot{x}+k_3x^{2q+1}+k_4x^{q+1}+\lambda_1x=0$, where$k_i$'s, $i=1,2,3,4$, $\lambda_1$ and $q$ are arbitrary parameters, whichincludes several physically important nonlinear oscillators such as the simpleharmonic oscillator, anharmonic oscillator, force-free Helmholtz oscillator,force-free Duffing and Duffing-van der Pol oscillators, modified Emden typeequation and its hierarchy, generalized Duffing-van der Pol oscillator equationhierarchy and so on and investigate the integrability properties of this rathergeneral equation. We identify several new integrable cases for arbitrary valueof the exponent $q, q\in R$. The $q=1$ and $q=2$ cases are analyzed in detailand the results are generalized to arbitrary $q$. Our results show that manyclassical integrable nonlinear oscillators can be derived as sub-cases of ourresults and significantly enlarge the list of integrable equations that existin the contemporary literature. To explore the above underlying results we usethe recently introduced generalized extended Prelle-Singer procedure applicableto second order ODEs. As an added advantage of the method we not only identifyintegrable regimes but also construct integrating factors, integrals of motionand general solutions for the integrable cases, wherever possible, and bringout the mathematical structures associated with each of the integrable cases.
机译:在本文中,我们考虑形式为$ \ ddot {x} +(k_1x ^ q + k_2)\ dot {x} + k_3x ^ {2q + 1} + k_4x ^ {q + 1的广义二阶非线性常微分方程} + \ lambda_1x = 0 $,其中$ k_i $,$ i = 1,2,3,4 $,$ \ lambda_1 $和$ q $是任意参数,其中包括几个物理上重要的非线性振荡器,例如简单谐波振荡器,非谐振荡器,无力Helmholtz振荡器,无力Duffing和Duffing-van der Pol振荡器,改进的Emden类型方程及其层次,广义Duffing-van der Pol振荡器方程层次等,并研究了该一般方程的可积性。我们为R $的指数$ q,q \的任意值确定了几个新的可积情况。详细分析了$ q = 1 $和$ q = 2 $的情况,并将结果推广到任意的$ q $。我们的结果表明,许多经典的可积分非线性振荡器都可以作为我们研究结果的子情况,并大大扩大了当代文献中存在的可积分方程的列表。为了探索以上基本结果,我们使用了最近引入的适用于二阶ODE的广义扩展Prelle-Singer过程。作为该方法的附加优点,我们不仅可以确定可积分状态,而且可以在可能的情况下构造积分因子,运动积分和可积分情况的一般解,并得出与每个可积分情况相关的数学结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号